SPICE simulation of a Combo Wave Generator.

Thanks for this article to ssleandro

 

In this article we ‘ll se how to implement a template for a Combination Wave Generator that can be a Surge Generator, a Line Impedance Stabilization Networks (LISN), motor control, ripple current, etc. This model can be very useful for hardware engineers which can utilize it in their projects to speed up project development. The platform used for the simulation is PSpice but
it can easily replicated in other SPICE simulation software.

 

The simplified model of the GPM consists of an High-Voltage source U, a charging resistor Rc, an energy storage capacitor Cc. This part of circuit is connected by a switch to 2 Pulse duration shaping resistors Rs, an impedance matching resistor Rm and a Rise time shaping indutor Lr, as in the picture below

 

 

GPM-SurgeGenerator_page3_image1

 

typical values of this components are:  Cc=7.76μF,  Rs1=14.8 Ohm,  Rm=1.05 Ohm,  Lr=9.74μH,  Rs2=23.3 Ohm. The peak voltage on Rs2 can be 1KV, 2KV,..6KV.

 

In the following schematic we set the high voltage with the initial condition of the CapacitorCc, for example for 6KV, we set 6300 in the PSpice IC field of the Cc component. We can adjust the time in U1 to make surge hit at 90/270 degree or whatever phase we want.

 

GPM-SurgeGenerator_page4_image1

 

GPM-SurgeGenerator_page4_image2

 

 

Calibration of Surge Generator.

The IEC/EN 61000-4-5 standars requires the following waveform of open-circuit voltage with no Coupling/Decoupling network (CDN) connected

 

GPM-SurgeGenerator_page5_image1

 

This is the result of the simulation that shows a voltage waveform that fullfills requirementof IEC/EN 61000-4-5

 

GPM-SurgeGenerator_page5_image2

 

 

Below the image of the waveform of short-circuit current with no CDN connected

 

GPM-SurgeGenerator_page6_image2

 

and here again the simulated results:

 

GPM-SurgeGenerator_page6_image1

 

Ipeak is about 1.5KA, T1 is 8uS and T2 is 20uS. The effective coupling impedance is 2Ohm. The simulated current waveform fulfills requirement of IEC/EN 61000-4-5 standards.